Une notion de récurrence dans le modèle du tas de sable sur le réseau carré

Henri Derycke joint work with Yvan Le Borgne

LaBRI

JCB 2019, Février 11-13, Bordeaux

Configuration: $\eta: V \mapsto \mathbb{N}$ $v \in V$ is *unstable* for η if $\eta(v) \ge \deg(v)$, it is *stable* otherwise.

Configuration: $\eta: V \mapsto \mathbb{N}$ $v \in V$ is *unstable* for η if $\eta(v) \ge \deg(v)$, it is *stable* otherwise. Toppling $u: \eta \mapsto \eta + \Delta^{(u)}$ If u is unstable, the toppling is legal. It is forced otherwise.

Configuration: $\eta: V \mapsto \mathbb{N}$ $v \in V$ is *unstable* for η if $\eta(v) \ge \deg(v)$, it is *stable* otherwise. Toppling $u: \eta \mapsto \eta + \Delta^{(u)}$ If u is unstable, the toppling is legal. It is

forced otherwise.

Configuration: $\eta: V \mapsto \mathbb{N}$

 $v \in V$ is *unstable* for η if $\eta(v) \ge \deg(v)$, it is *stable* otherwise.

Toppling $u: \eta \mapsto \eta + \Delta^{(u)}$ If u is unstable, the toppling is legal. It is forced otherwise.

Configuration: $\eta: V \mapsto \mathbb{N}$

 $v \in V$ is *unstable* for η if $\eta(v) \ge \deg(v)$, it is *stable* otherwise.

Toppling $u: \eta \mapsto \eta + \Delta^{(u)}$ If u is unstable, the toppling is legal. It is forced otherwise.

Configuration: $\eta: V \mapsto \mathbb{N}$

 $v \in V$ is *unstable* for η if $\eta(v) \ge \deg(v)$, it is *stable* otherwise.

Toppling $u: \eta \mapsto \eta + \Delta^{(u)}$ If u is unstable, the toppling is legal. It is forced otherwise.

Configuration: $\eta: V \mapsto \mathbb{N}$

 $v \in V$ is *unstable* for η if $\eta(v) \ge \deg(v)$, it is *stable* otherwise.

Toppling $u: \eta \mapsto \eta + \Delta^{(u)}$ If u is unstable, the toppling is legal. It is forced otherwise.

The order of toppling does not change the result: $\eta \to \eta + \sum_{v \in V} a_v \Delta^{(v)}$.

Configuration: $\eta: V \mapsto \mathbb{N}$

 $v \in V$ is *unstable* for η if $\eta(v) \ge \deg(v)$, it is *stable* otherwise.

Toppling $u: \eta \mapsto \eta + \Delta^{(u)}$ If u is unstable, the toppling is legal. It is forced otherwise.

The order of toppling does not change the result: $\eta \to \eta + \sum_{v \in V} a_v \Delta^{(v)}$.

Stabilisation

Stabilisation: while a vertex is unstable, topple it.

How to stabilize (even with a large number of grains)?

How to stabilize (even with a large number of grains)?

We distinguish a vertex as the sink that won't topple.

How to stabilize (even with a large number of grains)?

We distinguish a vertex as the sink that won't topple.

The sink guarantees that the stabilisation of any configuration η terminates and we note the result $mathsfstab(\eta)$.

How to stabilize (even with a large number of grains)?

We distinguish a vertex as the sink that won't topple.

The sink guarantees that the stabilisation of any configuration η terminates and we note the result $mathsf stab(\eta)$.

Markov Chain

- States: stable configurations on G
- Transition: Add a particle from the sink to a vertex chosen uniformly and stabilize

Recurrent states are in the same connected component.

How to stabilize (even with a large number of grains)?

We distinguish a vertex as the sink that won't topple.

The sink guarantees that the stabilisation of any configuration η terminates and we note the result mathsf stab(η).

Markov Chain

- States: stable configurations on G
- Transition: Add a particle from the sink to a vertex chosen uniformly and stabilize

Recurrent states are in the same connected component.

Dhar operator

Dhar operator

0	1
2	2
S	1

Dhar operator

Dhar operator

Topple the sink (forced), then stabilize: $dhar(\eta) := stab(\eta + \Delta^{(s)})$

Dhar Criterion

Dhar operator

Topple the sink (forced), then stabilize: $dhar(\eta) := stab(\eta + \Delta^{(s)})$

Dhar Criterion

Dhar operator

Topple the sink (forced), then stabilize: $dhar(\eta) := stab(\eta + \Delta^{(s)})$

Dhar Criterion

Dhar operator

Topple the sink (forced), then stabilize: $dhar(\eta) := stab(\eta + \Delta^{(s)})$

Dhar Criterion

Dhar operator

Topple the sink (forced), then stabilize: $dhar(\eta) := stab(\eta + \Delta^{(s)})$

Dhar Criterion

Dhar operator

Topple the sink (forced), then stabilize: $dhar(\eta) := stab(\eta + \Delta^{(s)})$

Dhar Criterion

Dhar operator

Topple the sink (forced), then stabilize: $dhar(\eta) := stab(\eta + \Delta^{(s)})$

Dhar Criterion

Dhar operator

Topple the sink (forced), then stabilize: $dhar(\eta) := stab(\eta + \Delta^{(s)})$

Dhar Criterion

Dhar operator

Topple the sink (forced), then stabilize: $dhar(\eta) := stab(\eta + \Delta^{(s)})$

Dhar Criterion

Dhar operator

Topple the sink (forced), then stabilize: $dhar(\eta) := stab(\eta + \Delta^{(s)})$

Dhar Criterion

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: s,

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: s, e_1 ,

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: s, e_1, e_2 ,

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2,$

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: s, e_1, e_2, v_2, e_3

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5,$

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4,$

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: s, e_1 , e_2 , v_2 , e_3 , e_5 , v_4 , e_6 ,

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: s, e_1 , e_2 , v_2 , e_3 , e_5 , v_4 , e_6 , v_3 ,

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4,$

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1,$

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1, e_7,$

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1, e_7, v_5,$

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1, e_7, v_5, e_8,$

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1, e_7, v_5, e_8, v_6, e_9$

Theorem (Dhar, Majumdar 92)

The recurrent configurations for a finite graph G and its spanning trees are in bijection.

Several bijections:

Dhar/Majumdar 92 (e.g. Haglund bounce's path for sorted recurrents on K_n

Bernardi 06 (e.g. Visiting frontier in planar maps between primal/dual spanning trees)

Cori/Le Borgne 03 (CLB) (e.g. Dhar criterion more uniform in space)

Mark edges incident to the sink as pending edges. While there is a pending edge Get the closest pending edge to the sink Process the grain(s) on the edge If a vertex become unstable, topple it and mark its untreated incident edges as pending edges.

Edge-vertex traversal: $s, e_1, e_2, v_2, e_3, e_5, v_4, e_6, v_3, e_4, v_1, e_7, v_5, e_8, v_6, e_9$

In Dhar criterion, each edge captures the last grain that crosses it. For any recurrent configuration η on $G = (V \cup \{s\}, E)$,

$$level(\eta) = \left(\sum_{v \in V} \eta(v)\right) + \deg(s) - |E|.$$

Let
$$R_G(y) = \sum_{\eta \in \text{Rec}(G,s)} y^{level(\eta)}$$

Theorem (López 97)

For any graph $G = (V \cup \{s\}, E)$,

$$R_G(y) = \text{Tutte}_G(1, y).$$

where $\operatorname{Tutte}_G(1,y) = \sum_{T \in \Sigma(G)} y^{\operatorname{ext}(T)}$ counts on spanning trees the number of active external edges: external edges that are maximal in their fundamental cycle.

In Dhar criterion, each edge captures the last grain that crosses it. For any recurrent configuration η on $G = (V \cup \{s\}, E)$,

$$level(\eta) = \left(\sum_{v \in V} \eta(v)\right) + \deg(s) - |E|.$$

Let
$$R_G(y) = \sum_{\eta \in \text{Rec}(G,s)} y^{level(\eta)}$$

Theorem (López 97)

For any graph $G = (V \cup \{s\}, E)$,

$$R_G(y) = \text{Tutte}_G(1, y).$$

where $\operatorname{Tutte}_G(1,y) = \sum_{T \in \Sigma(G)} y^{\operatorname{ext}(T)}$ counts on spanning trees the number of active external edges: external edges that are maximal in their fundamental cycle.

In Dhar criterion, each edge captures the last grain that crosses it. For any recurrent configuration η on $G = (V \cup \{s\}, E)$,

$$level(\eta) = \left(\sum_{v \in V} \eta(v)\right) + \deg(s) - |E|.$$

Let
$$R_G(y) = \sum_{\eta \in \text{Rec}(G,s)} y^{level(\eta)}$$

Theorem (López 97)

For any graph $G = (V \cup \{s\}, E)$,

$$R_G(y) = \text{Tutte}_G(1, y).$$

where $\mathrm{Tutte}_G(1,y) = \sum_{T \in \Sigma(G)} y^{\mathrm{ext}(T)}$ counts on spanning trees the number of active external edges: external edges that are maximal in their fundamental cycle.

In Dhar criterion, each edge captures the last grain that crosses it. For any recurrent configuration η on $G = (V \cup \{s\}, E)$,

$$level(\eta) = \left(\sum_{v \in V} \eta(v)\right) + \deg(s) - |E|.$$

Let
$$R_G(y) = \sum_{\eta \in \text{Rec}(G,s)} y^{level(\eta)}$$

Theorem (López 97)

For any graph $G = (V \cup \{s\}, E)$,

$$R_G(y) = \text{Tutte}_G(1, y).$$

where $\operatorname{Tutte}_G(1,y) = \sum_{T \in \Sigma(G)} y^{\operatorname{ext}(T)}$ counts on spanning trees the number of active external edges: external edges that are maximal in their fundamental cycle.

Tracking external activity while changing order on edges

With $e_1 <_E e_2 <_E \cdots <_E e_{|E|}$ an order on the edges of E, an external edge is active if it is maximal for $<_F$ in its fundamental cycle.

Proposition

$$\mathrm{Tutte}_{\mathcal{G}}(1,y) = \sum_{\mathcal{T} \in \Sigma(\mathcal{G})} y^{\mathrm{ext}_{<_{\mathcal{E}}}(\mathcal{T})}$$
 does not depend on $<_{\mathcal{E}}$

Tracking external activity while changing order on edges

With $e_1 <_E e_2 <_E \cdots <_E e_{|E|}$ an order on the edges of E, an external edge is active if it is maximal for $<_F$ in its fundamental cycle.

Proposition

$$\operatorname{Tutte}_G(1,y) = \sum_{T \in \Sigma(G)} y^{\operatorname{ext}_{<_E}(T)}$$
 does not depend on $<_E$

 $\{e_i, e_i\}$ is a critical pair if

- e; is external
- e; is on e; fundamental cycle
- e; and e; are maximal on e; fundamental cycle

Tracking external activity while changing order on edges

With $e_1 <_E e_2 <_E \cdots <_E e_{|E|}$ an order on the edges of E, an external edge is active if it is maximal for $<_E$ in its fundamental cycle.

Proposition $\operatorname{Tutte}_{G}(1,y) = \sum_{T \in \Sigma(G)} y^{\operatorname{ext}_{<_{E}}(T)} \text{ does not depend on } <_{E}$

 $\{e_i, e_i\}$ is a critical pair if

- e; is external
- \triangleright e_i is on e_i fundamental cycle
- e; and e; are maximal on e; fundamental cycle

Let τ_i exchanging e_i and e_{i+1} in $<_E$.

$$\Phi_i(T) = \begin{cases} T\Delta\{e_i, e_{i+1}\} & \text{if } \{e_i, e_{i+1}\} \text{ is a critical pair of } T \\ T & \text{otherwise} \end{cases}$$

Lemma: for all $T \operatorname{ext}_{<_{\mathcal{F}}}(T) = \operatorname{ext}_{\tau:(<_{\mathcal{F}})}(\Phi_i(T))$.

Tutte Polynomial

Let a graph G = (V, E) and $<_E$ an order on the edges of E.

$$\mathrm{Tutte}_G(x,y) = \sum_{T \in \Sigma(G)} x^{\mathrm{int}(T)} y^{\mathrm{ext}(T)}$$

Active external edge: maximal in its fundamental cycle.

Active internal edge: maximal in its co-cycle.

 e_6 is active with fundamental cycle (e_3, e_4, e_6) . e_5 is active with co-cycle (e_1, e_2, e_5) .

For
$$G = K_4$$
, Tutte $_G(x, y) = x^3 + y^3 + 3x^2 + 4xy + 3y^2 + 2x + 2y$ and T weights xy .

When G is planar, $\operatorname{Tutte}_G(x,y) = \operatorname{Tutte}_{G^*}(y,x)$. Then if planar and self-dual, $\operatorname{Tutte}_G(x,y) = \operatorname{Tutte}_G(y,x)$

Eini+a	aranha
1 IIIILE	graphs

- Dhar Criterion
- ▷ Bijection between recurrent and spanning trees
- ▶ Invariant by edge exchange
- ▷ Symmetric for self-dual planar graphs

Finite graphs	Square lattice (biperiodicity)
> Stable configurations	
Dhar Criterion	
▷ Bijection between recurrent and	
spanning trees	
▶ Invariant by edge exchange	

▷ Symmetric for self-dual planar graphs

Finite graphs	Square lattice (biperiodicity)
> Stable configurations	▷ Biperiodic stable configurations
Dhar Criterion	
▷ Bijection between recurrent and	
spanning trees	
▶ Invariant by edge exchange	

▷ Symmetric for self-dual planar graphs

Finite graphs	Square lattice (biperiodicity)			
> Stable configurations	▷ Biperiodic stable configurations			
Dhar Criterion	▶ Weak Dhar Criterion (projective			
	sink)			
▷ Bijection between recurrent and				
spanning trees				
▶ Invariant by edge exchange				

 ▷ Symmetric for self-dual planar graphs

10 / 27

Finite graphs	Square lattice (biperiodicity)				
Stable configurations	▷ Biperiodic stable configurations				
Dhar Criterion	▶ Weak Dhar Criterion (projective sink)				
▷ Bijection between recurrent and spanning trees	 Bijection recurrent and some span- ning forests of the torus 				

▶ Invariant by edge exchange

 ▷ Symmetric for self-dual planar graphs

Finite graphs	Square lattice (biperiodicity)				
Stable configurations	▷ Biperiodic stable configurations				
Dhar Criterion	▶ Weak Dhar Criterion (projective				
	sink)				
▷ Bijection between recurrent and	▶ Bijection <i>recurrent</i> and some span-				
spanning trees	ning forests of the torus				
	▶ Restriction of Tutte polynomial				

- ▶ Invariant by edge exchange
- ▷ Symmetric for self-dual planar graphs

Finite graphs	Square lattice (biperiodicity)				
Stable configurations	▷ Biperiodic stable configurations				
Dhar Criterion	▶ Weak Dhar Criterion (projective				
	sink)				
▷ Bijection between recurrent and	▶ Bijection <i>recurrent</i> and some span-				
spanning trees	ning forests of the torus				
	▶ Restriction of Tutte polynomial				
▶ Invariant by edge exchange	▶ Distribution of external activity in-				
	variant by rotation of projective sink				

▷ Symmetric for self-dual planar graphs

Finite graphs	Square lattice (biperiodicity)			
Stable configurations	▷ Biperiodic stable configurations			
Dhar Criterion	▶ Weak Dhar Criterion (projective			
	sink)			
▷ Bijection between recurrent and	▶ Bijection <i>recurrent</i> and some span-			
spanning trees	ning forests of the torus			
	▶ Restriction of Tutte polynomial			
▶ Invariant by edge exchange	▶ Distribution of external activity in-			
	variant by rotation of projective sink			
Symmetric for self-dual planar graphs	▶ Symmetric joint distribution of ex-			
	ternal/internal activities changing by			
	rotation			

Some definition of recurrence for \mathbb{Z}^2

From wired uniform spanning forest [Gamlin, Jarai] with an anchor burning bijection.

Local description in probability [Priezzhev, Ruelle]

Sandpile identity: $\lim_{n\to\infty} dhar^n(0^{\mathbb{Z}^2})$? [Paoletti, Caracciollo, Sportiello, Levine, Pegden, Smart...]

11 / 27

_				_
-				
		n		

Source: W.Pegden, $n = 2^{13}$

Source: W.Pegden, $n = 2^{14}$

Source: W.Pegden, $n = 2^{18}$

Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]

Source: W.Pegden, $n = 2^{20}$

Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]

Source: W.Pegden, $n = 2^{30}$

- ► Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]
- ► Convergence in terms of density [Pegden, Smart 12]

Source: W.Pegden, $n = 2^{30}$

- ► Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]
- Convergence in terms of density [Pegden, Smart 12]

Source: W.Pegden, $n = 2^{30}$

- Fractal structure [Creutz, Bak, Tang 90, Ostojic 03, Dhar Sadhu 08]
- Convergence in terms of density [Pegden, Smart 12]

Pattern in periodic zones are invariant when toppling the sink \Rightarrow recurrent? Heuristic: locally, toppling the sink behave as the toppling of an half-plane

A stable configuration is recurrent for a direction $\vec{s} \in \mathbf{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

A stable configuration is recurrent for a direction $\vec{s} \in \mathbf{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

_	2	2	2	2	2	
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
2	2	2	2	2	2	2
,	2	2	2	2	2	,

Direction \vec{s} du puits

A stable configuration is recurrent for a direction $\vec{s} \in \mathbf{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

Direction \vec{s} du puits

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

	2	2	2	U	4	4
2	2	2	0	4	2	2
2	2	0	4	2	2	2
2	0	4	2	2	2	2
)	4	2	2	2	2	2
1	2	2	2	2	2	2
,	2	2	2	2	2	,

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

A stable configuration is recurrent for a direction $\vec{s} \in \mathbf{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

A stable configuration is recurrent for a direction $\vec{s} \in \mathbf{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

A stable configuration is recurrent for a direction $\vec{s} \in \mathbf{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

A stable configuration is recurrent for a direction $\vec{s} \in \mathbb{Q}^2$ (\neq (0,0)) if after a forced toppling of any half-plane orthogonal to \vec{s} , all other vertices in the complement topple (once).

Demo

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

Frozen sweep line 3 3 Working 3 2 3 2 zone 2 3 2 3 1

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

sweep line

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

▶ Periodicity along the orthogonal of the sink

The Weak Dhar Criterion is decidable with in time bounded by a function of the dimension of the pattern and the direction \vec{s} .

sweep line

- Periodicity along the orthogonal of the sink
- ► Ultimately periodicity in the opposite direction of the sink, whatever the starting half-plane

sweep line

3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
1 1	-	-	"	. •	-	_	~	. •	
3	3	<u> </u>	0	<u> </u>		<u> </u>	0	3	3
3	<u> </u>	<u> </u>				<u> </u>		!	3
	3	3	0	3	3	3	0	3	

3	3	3	0	3	3	3	0	3	3
0				0	1 7				
3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3		1	3	3	1
3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
2	3	3	0	2	3	3	0	3	3

Periodic spanning forest rooted on the half-plane

3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
				3					_

Biperiodic spanning forest with infinite paths directed towards the sink

3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3

Biperiodic spanning forest with infinite paths directed towards the sink

3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3

Spanning forests of the torus rooted on non contractible cycles with slope (4,-3)

Recurrent configurations of period $W \times H$ defined by weak Dhar criterion with projective sink in direction \vec{s} are in bijections with admissible forests of $\mathcal{F}_{W \times H, \vec{s}}$, hence excluding those of slope orthogonal to \vec{s} .

Spanning forests of the torus rooted on non contractible cycles with slope (4,-3)

Recurrent configurations of period $W \times H$ defined by weak Dhar criterion with projective sink in direction \vec{s} are in bijections with admissible forests of $\mathcal{F}_{W \times H, \vec{s}}$, hence excluding those of slope orthogonal to \vec{s} .

Spanning forest of the torus with slope (1,0) incompatible with the vertical direction

Spanning forests of the torus rooted on non contractible cycles with slope (4, -3)

Recurrent configurations of period $W \times H$ defined by weak Dhar criterion with projective sink in direction \vec{s} are in bijections with admissible forests of $\mathcal{F}_{W \times H, \vec{s}}$, hence excluding those of slope orthogonal to \vec{s} .

Determinantal formula [Kenyon 17] for non contractible cycle rooted spanning forests (NCRSFs)

Refinement with the infinite path's slope

k · j	k · i								
ĸ · J	0	1	2	3	4				
0		31300528	541732	1528	1				
1	31300528	5427200	31232	4					
2	541732	31232	6						
3	1528	4							
4	1								

Table: Number of NCRSFs with k cycles of slope (i, j) on the torus $T_{4,4}$

Computation for $W, H \leq 9$

Placing the grains on the edges.

Placing the grains on the edges.

Orientation towards the sink

Placing the grains on the edges.

- Orientation towards the sink
- ► Internal: 1 grain to the father

- Orientation towards the sink
- ▶ Internal: 1 grain to the father
- ► External: depends on the position of the maximal edge on the fundamental cycle

Placing the grains on the edges. —

- Orientation towards the sink
- ► Internal: 1 grain to the father
- ► External: depends on the position of the maximal edge on the fundamental cycle

Placing the grains on the edges. O

- Orientation towards the sink
- ▶ Internal: 1 grain to the father
- ► External: depends on the position of the maximal edge on the fundamental cycle

Placing the grains on the edges. O

- Orientation towards the sink
- ▶ Internal: 1 grain to the father
- ► External: depends on the position of the maximal edge on the fundamental cycle

- Orientation towards the sink
- ▶ Internal: 1 grain to the father
- ► External: depends on the position of the maximal edge on the fundamental cycle

- Orientation towards the sink
- ▶ Internal: 1 grain to the father
- ► External: depends on the position of the maximal edge on the fundamental cycle

- Orientation towards the sink
- ► Internal: 1 grain to the father
- ► External: depends on the position of the maximal edge on the fundamental cycle
- ► External: on the other endpoint if active

- Orientation towards the sink
- ▶ Internal: 1 grain to the father
- ► External: depends on the position of the maximal edge on the fundamental cycle
- ► External: on the other endpoint if active

Placing the grains on the edges.

- Orientation towards the sink
- ▶ Internal: 1 grain to the father
- External: depends on the position of the maximal edge on the fundamental cycle
- ► External: on the other endpoint if active

Placing the grains on the edges.

- Orientation towards the sink
- ▶ Internal: 1 grain to the father
- External: depends on the position of the maximal edge on the fundamental cycle
- External: o on the other endpoint if active

Cycles are directed such that they are globally decreasing. Periodicity \Rightarrow Maximal edge at finite distance

Placing the grains on the edges. —

- Orientation towards the sink
- ▶ Internal: 1 grain to the father
- ► External: depends on the position of the maximal edge on the fundamental cycle
- ► External: on the other endpoint if active

Cycles are directed such that they are globally decreasing. Periodicity \Rightarrow Maximal edge at finite distance

$$\mathcal{T}_{W \times H, \boldsymbol{s}}(x, y) = \sum_{T \in \mathcal{F}_{W \times H}} x^{\mathrm{int}_{W \times H}(T)} y^{\mathrm{ext}_{W \times H}(T)}$$

 $e <_{\mathbf{S}} f$ if e is closer to the sink than f.

Restrictions

- \triangleright On NCRSF: $\mathcal{F}_{W \times H}$.
- On the activity: on the rectangular fundamental domain $W \times H$ consider exactly 2WH edges.

$$\mathcal{T}_{W \times H, \boldsymbol{s}}(x, y) = \sum_{T \in \mathcal{F}_{W \times H}} x^{\mathrm{int}_{W \times H}(T)} y^{\mathrm{ext}_{W \times H}(T)}$$

 $e <_{s} f$ if e is closer to the sink than f.

Restrictions

- ▶ On NCRSF: $\mathcal{F}_{W \times H}$.
- On the activity: on the rectangular fundamental domain W × H consider exactly 2WH edges.

$$\mathcal{T}_{W \times H, \boldsymbol{s}}(x, y) = \sum_{T \in \mathcal{F}_{W \times H}} x^{\mathrm{int}_{W \times H}(T)} y^{\mathrm{ext}_{W \times H}(T)}$$

 $e <_{\mathbf{s}} f$ if e is closer to the sink than f.

Restrictions

- ▶ On NCRSF: $\mathcal{F}_{W \times H}$.
- On the activity: on the rectangular fundamental domain W × H consider exactly 2WH edges.

$$\mathcal{T}_{W \times H, \boldsymbol{s}}(x, y) = \sum_{T \in \mathcal{F}_{W \times H}} x^{\mathrm{int}_{W \times H}(T)} y^{\mathrm{ext}_{W \times H}(T)}$$

 $e <_{\mathbf{s}} f$ if e is closer to the sink than f.

Restrictions

- \triangleright On NCRSF: $\mathcal{F}_{W\times H}$.
- On the activity: on the rectangular fundamental domain $W \times H$ consider exactly 2WH edges.

21 / 27

External activity on $\mathcal{F}_{3,1}$:

External activity on $\mathcal{F}_{3,1}$:

Theorem (D., Le Borgne 2018)

For any directions s, s', $\mathcal{T}_{W \times H, s}(1, y) = \mathcal{T}_{W \times H, s'}(1, y)$.

External activity on $\mathcal{F}_{3,1}$:

Theorem (D., Le Borgne 2018)

For any directions s, s', $\mathcal{T}_{W \times H, s}(1, y) = \mathcal{T}_{W \times H, s'}(1, y)$.

Since \mathbb{Z}^2 is self-dual, we have:

$$\mathcal{T}_{3\times 1,(0,1)}(x,y) = x^3y^3 + 3xy^2 + 3x^2y + 3x + 3y + 4$$

$$\mathcal{T}_{3\times 1,(-1,0)}(x,y) = x^3y^3 + 3x^2 + 3y^2 + 3xy + 3x + 3y + 1$$

Direction of the sink

Direction of the sink

Convex hulls of fundamental cycles.

Direction of the sink

- Convex hulls of fundamental cycles.
- ► Active ⇒ Convex hull corner

Direction of the sink

- Convex hulls of fundamental cycles.
- ▶ Active ⇒ Convex hull corner

For each external edge e, there is an activity sector $[\theta_e, \theta'_e)$.

Direction of the sink

- Convex hulls of fundamental cycles.
- ▶ Active ⇒ Convex hull corner

For each external edge e, there is an activity sector $[\theta_e, \theta'_e)$.

For any sector excluding all $(\theta_e)_e$ and $(\theta'_e)_e$, the external activity is invariant.

Critical pair exchange: changing forest slope

Checkpoint

Finite graphs	Square lattice (biperiodicity)				
Dhar Criterion	▶ Weak Dhar Criterion (projective				
Dilai Citterion	sink)				
▷ Bijection between recurrent and	▶ Bijection <i>recurrent</i> and some span-				
spanning trees	ning forests of the torus				
	▶ Restriction of Tutte polynomial				
▶ Invariant by edge exchange	▶ Distribution of external activity in-				
	variant by rotation of projective sink				
> Symmetric for self-dual planar	▶ Symmetric joint distribution of ex-				
	ternal/internal activities changing by				
graphs	rotation				

We have

▶ Weak Dhar Criterion efficient for biperiodic configurations

- ▶ Weak Dhar Criterion efficient for biperiodic configurations
- Bijection with NCRSFs, extending the definition of biperiodic recurrent configurations

- Weak Dhar Criterion efficient for biperiodic configurations
- Bijection with NCRSFs, extending the definition of biperiodic recurrent configurations
- Invariant distribution of external activity on NCRSFs and order given by a direction

- Weak Dhar Criterion efficient for biperiodic configurations
- Bijection with NCRSFs, extending the definition of biperiodic recurrent configurations
- Invariant distribution of external activity on NCRSFs and order given by a direction
- ▶ Involution on NCRSFs for atomic rotation preserving this distribution

Perspectives

 $ightharpoonup \mathcal{T}_{W\times H,s}(x,y)$ depends on s

- $ightharpoonup \mathcal{T}_{W \times H,s}(x,y)$ depends on s
- ▶ Iteration of the rotation step can take several rounds before the identity

- $ightharpoonup \mathcal{T}_{W \times H,s}(x,y)$ depends on s
- ▶ Iteration of the rotation step can take several rounds before the identity
- What about other orders?

- $ightharpoonup \mathcal{T}_{W\times H,s}(x,y)$ depends on s
- Iteration of the rotation step can take several rounds before the identity
- What about other orders?
 - Experiments: periodic decreasing orders towards a direction is enough: $e <_E f \Rightarrow e + (iW, jH) <_E f + (iW, jH)$ and $\langle s, (iW, jH) \rangle > 0 \Rightarrow e + (iW, jH) <_E e$

- $ightharpoonup \mathcal{T}_{W \times H,s}(x,y)$ depends on s
- Iteration of the rotation step can take several rounds before the identity
- What about other orders?
 - Experiments: periodic decreasing orders towards a direction is enough: $e <_F f \Rightarrow e + (iW, iH) <_F f + (iW, iH)$ and $\langle s, (iW, iH) \rangle > 0 \Rightarrow e + (iW, iH) <_F e$
 - Only decreasing, or only periodic

- $ightharpoonup \mathcal{T}_{W \times H,s}(x,y)$ depends on s
- Iteration of the rotation step can take several rounds before the identity
- What about other orders?
 - Experiments: periodic decreasing orders towards a direction is enough: $e <_F f \Rightarrow e + (iW, iH) <_F f + (iW, iH)$ and $\langle s, (iW, iH) \rangle > 0 \Rightarrow e + (iW, iH) <_F e$
 - Only decreasing, or only periodic
 - Anything else

THANK YOU

Markov Chain for $G = (V \cup \{S\}, E)$

- States: stable configurations on G
- Transition: Add a particle to a vertex chosen uniformly and stabilize

- The recurrent states are called recurrent configurations.
- The stationary distribution is uniform on the recurrent configurations.

Dhar Criterion A stable configuration is recurrent if and only if adding a grain to each neighbor of the sink, and stabilizing result to the same configuration. (fixed point)

Markov Chain for $G = (V \cup \{S\}, E)$

- States: stable configurations on G
- Transition: Add a particle to a vertex chosen uniformly and stabilize

- The recurrent states are called recurrent configurations.
- The stationary distribution is uniform on the recurrent configurations.

Dhar Criterion A stable configuration is recurrent if and only if adding a grain to each neighbor of the sink, and stabilizing result to the same configuration. (fixed point)

Close to [Pegden and Smart, 2017]

Figure: Each non blue zone is described by a quadratic form. [arxiv:1708.09432]

$$M(a,b,c) = \begin{pmatrix} c+a & b \\ b & c-a \end{pmatrix}$$

The number of topples is:

$$h(\mathbf{x}) = \left\lceil \frac{1}{2} \mathbf{x}^t M(a, b, c) \mathbf{x} \right\rceil$$
$$= (c+a)x^2 + 2bxy + (c-a)y^2$$

$$M(a,b,c) = \begin{pmatrix} c+a & b \\ b & c-a \end{pmatrix}$$

The number of topples is:

$$h(\mathbf{x}) = \left\lceil \frac{1}{2} \mathbf{x}^t M(a, b, c) \mathbf{x} \right\rceil$$
$$= (c+a)x^2 + 2bxy + (c-a)y^2$$

Then number of grains is

$$\Delta h(\mathbf{u}) = \sum_{\mathbf{v} \in \mathbf{u}} h(\mathbf{v}) - h(\mathbf{u}).$$

$$M(a,b,c) = \begin{pmatrix} c+a & b \\ b & c-a \end{pmatrix}$$

The number of topples is:

$$h(\mathbf{x}) = \left[\frac{1}{2}\mathbf{x}^t M(a, b, c)\mathbf{x}\right]$$
$$= (c+a)x^2 + 2bxy + (c-a)y^2$$

Then number of grains is

$$\Delta h(\mathbf{u}) = \sum_{\mathbf{v} \sim \mathbf{u}} h(\mathbf{v}) - h(\mathbf{u}).$$

▶ It's *periodic* for $a, b, c \in \mathbb{Q}$

$$M(a,b,c) = \begin{pmatrix} c+a & b \\ b & c-a \end{pmatrix}$$

The number of topples is:

$$h(x) = \left\lceil \frac{1}{2} x^t M(a, b, c) x \right\rceil$$
$$= (c+a)x^2 + 2bxy + (c-a)y^2$$

Then number of grains is

$$\Delta h(\mathbf{u}) = \sum_{\mathbf{v} \in \mathcal{V}} h(\mathbf{v}) - h(\mathbf{u}).$$

- ▶ It's *periodic* for $a, b, c \in \mathbb{Q}$
- But it may be negative and/or unstable!

JCB 2019

A definition of recurrence for periodic stable configurations

Pattern + two dimensional period $(\vec{p_1}, \vec{p_2})$.

$$\forall \mathsf{x} \in \mathbb{Z}^2 u(\mathsf{x}) = u(\mathsf{x} + \vec{p_1}) = u(\mathsf{x} + \vec{p_2})$$

3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3
0	1	3 <i>p</i>	² 3	0	1	3	3	0	1
3	1	1	3	3	1	1	3	3	1
3	3	3	0	3	3	3	0	3	3
0	1	3	3	0	1	3	3	0	1
3	1	1	3	3 /	i 1	1	3	3	1
3	3	3	0	3	3	3	0	3	3

Periodicity on -s

Lemme

If a periodic configuration is recurrent, then there exists a position $y=t_1$ for which all vertices of the first period are toppled.

have $Period1 \subset E_{0,t_1} \Rightarrow E_{0,t_1} = E_{H,t_1-H}$ and $v \in E_{0,t_1} \Rightarrow v + H\vec{y} \in E_{H,t_1}$. Then $E_{H,t_1} \supset Period2$.

We